If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+7x-23=0
a = 16; b = 7; c = -23;
Δ = b2-4ac
Δ = 72-4·16·(-23)
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-39}{2*16}=\frac{-46}{32} =-1+7/16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+39}{2*16}=\frac{32}{32} =1 $
| 34=6x-8 | | p/15=-20 | | x+651/3=1045/6 | | 3x+8=10+x | | 11x-2=33x-3 | | 8/9x+30=3/9x+45 | | 44–x+2x=50 | | 1/3h=6;h=3 | | 12x-16=4x+8 | | 2(n+3)=-46 | | 45=5/8x-15 | | (2x+55)=119 | | 13x-27=4x+81 | | 4(3^2x)+7=87 | | 12x-70=5x-14 | | 6y-5=2y+4 | | 24=9x-12 | | 5/7x+15=45 | | (x-3^2=1 | | 24x-36=12x+12 | | 8=h/16 | | 12=z-(-10) | | 6/12x+4=2/11x+16 | | 89=29+4b | | 5x-22=7x | | 4x+16=4x+32 | | 10x+36=16x+18 | | 23+28+40+y-50=120 | | 2(7a+8)=-22+4a | | -17=8(5y+2) | | x+85=129 | | b+6=20 |